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Abstract: Polarization-sensitive optical coherence tomography (PS-OCT) measures the po-
larization states of the backscattered light from tissue that can improve angiography based on
conventional optical coherence tomography (OCT). We present a feasibility study on PS-OCT
integrated with deep learning for PS-OCT angiography (PS-OCTA) imaging of human cutaneous
microvasculature. Two neural networks were assessed for PS-OCTA, including the residual
dense network (RDN), which previously showed superior performance for angiography with
conventional OCT and the upgraded grouped RDN (GRDN). We also investigated different
protocols to process the multiple signal channels provided by the Jones matrices from the
PS-OCT system to achieve optimal PS-OCTA performance. The training and testing of the deep
learning-based PS-OCTA were performed using PS-OCT scans collected from 18 skin locations
comprising 16,600 B-scan pairs. The results demonstrated a moderately improved performance
of GRDN over RDN, and of the use of the combined signal from the Jones matrix elements over
the separate use of the elements, as well as a similar image quality to that provided by speckle
decorrelation angiography. GRDN-based PS-OCTA also showed ∼2-3 times faster processing
and improved mitigation of tissue motion as compared to speckle decorrelation angiography, and
enabled fully automatic processing. Deep learning-based PS-OCTA can be used for imaging
cutaneous microvasculature, which may enable easy adoption of PS-OCTA for preclinical and
clinical applications.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography angiography (OCTA) comprises a family of techniques for
label-free, in vivo imaging of the blood microvasculature with micrometer-scale resolutions
[1]. It is based on optical coherence tomography (OCT) which measures the near-infrared light
backscattered from tissue. OCTA further uses the temporal changes of OCT signal from the same
tissue locations, to identify the microvessels with markedly high changes induced by the motion
of the scatterers in the blood flow. Multiple OCTA variants have been developed, depending
on the algorithm used to quantify the temporal changes of OCT signal and the type of OCT
signal (i.e., intensity, phase or complex OCT signal) used for analysis [2–5]. These variants

#488822 https://doi.org/10.1364/BOE.488822
Journal © 2023 Received 2 Mar 2023; revised 9 May 2023; accepted 5 Jun 2023; published 5 Jul 2023

https://orcid.org/0000-0002-1848-9380
https://orcid.org/0000-0002-7164-8053
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.488822&amp;domain=pdf&amp;date_stamp=2023-07-05


Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 3857

find a growing number of applications in ophthalmology [6–8], neurology [9] and dermatology
[10–12]. Many tissue types in these imaging applications present birefringence due to the fibrous
structures, such as the Henle’s fiber in the retina [13], nerves in the brain [9], and collagen
fibers in the skin [14,15]. Imaging birefringent tissue with conventional OCT usually leads to
polarization-induced artifacts in the OCT signal, which could subsequently compromise the
OCTA signal, as demonstrated by Tang et al. [16].

Polarization-sensitive OCT (PS-OCT) is another extension of OCT, which images polarization
properties of tissue, such as birefringence, degree of polarization uniformity and optic axis
orientation [17–19]. To do this, PS-OCT measures the polarization states of the backscattered
light from tissue, which, after combination also mitigates the polarization-induced artifacts
observed in conventional OCT. As such, the benefits of PS-OCT for angiography have been
demonstrated in recent studies. Tang et al. proposed PS-OCT angiography (PS-OCTA) for
imaging human skin with optical microangiography (OMAG) using the complex signal from
a PS-OCT system [16]. They demonstrated the superior performance of PS-OCTA which
eliminated polarization-related artifacts, as compared to conventional OCTA. In another earlier
study [20], Jones matrices provided by PS-OCT were used for PS-OCTA imaging with a
speckle decorrelation algorithm, based on the intensity signal. With the optimized processing
protocol, PS-OCTA showed improved vessel contrast and effective imaging depth in human
skin as compared to conventional OCTA. However, one drawback of PS-OCTA is the elevated
computational workload, particularly when a time-consuming OCTA algorithm (e.g., speckle
decorrelation with moving window processing) was directly applied to the individual Jones
matrix elements [20].

Recently, deep learning has been adopted to construct OCTA images using OCT scans, showing
improved processing speed and vessel contrast [21]. Lee et al. used U-Net to generate OCTA
images using single OCT B-scans of the retina, based on a large training set (401,098 OCT
B-scans) with expert-generated vessel label images [22]. Although their method eliminated
the requirement for repeated B-scans from the same locations and thus could be less impacted
by motion artifacts, the small vessels could not be reliably imaged. Jiang et al. assessed
multiple networks for generating OCTA images using repeated OCT B-scans from the same tissue
locations [23]. To create high-quality vessel label images, 48 repeated OCT B-scans from each
location were acquired and then processed by the split-spectrum amplitude and phase-gradient
angiography (SSAPGA) algorithm. They demonstrated that the residual dense network (RDN)
outperformed other networks. To date, no deep learning has been adapted to PS-OCT for
angiography, which has multiple signal channels and requires an optimal processing protocol to
improve the vessel contrast and the processing speed.

In this study, we present an integration of Jones matrix-based PS-OCT with deep learning
for PS-OCTA imaging. Three-dimensional (3-D) PS-OCT scans from 18 human skin regions
comprising 16,600 B-scan pairs (i.e., 2 repeated B-scans from each lateral location) were acquired
with the vessel labels generated by the custom speckle decorrelation algorithm [20]. Training
and validation of the deep learning-based PS-OCTA method was performed on 3000 B-scan
pairs with the remaining used for testing, both with RDN and the upgraded grouped RDN
(GRDN). We assessed the performance of RDN and GRDN for PS-OCTA imaging, as compared
to the vessel labels. Subsequently, using the identified superior GRDN, we assessed different
processing protocols of the Jones matrices for PS-OCTA imaging, and assessed the overall
imaging performance of deep learning-based PS-OCTA with the optimal protocol. The results
demonstrated that deep learning-based PS-OCTA can provide a comparable imaging capability
to the speckle decorrelation algorithm, with ∼2-3 times faster processing and mitigated motion
artifacts.
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2. Methods

2.1. PS-OCT scan acquisition

A home-built PS-OCT system, previously described in Ref. [19], was used to collect 3-D PS-OCT
scans. In brief, a wavelength-swept light source (Axsun Technologies, Billerica, USA) provided
an A-line rate of 50 kHz, a center wavelength of 1302 nm and a measured axial resolution of
11 µm in air. The light passed through a free-space polarization delay unit (PDU) to delay
one of the two orthogonal polarization states of the incident light on the tissue surface. This
delay together with the extended total imaging depth range of 10 mm, enabled depth-encoded
polarization multiplexing [24]. The polarization-delayed light illuminated the tissue via an
objective lens (LSM03, Thorlabs Inc., Newton, USA), providing a lateral imaging resolution of
13 µm. The backscattered light from tissue was collected by the objective lens, combined with
the reference light and subsequently input into a polarization-diverse optical mixer (PDOM-1310,
Finisar, Sunnyvale, USA) for balanced detection in two orthogonal polarization directions. After

data reconstruction, a complex-valued full Jones matrix,
⎡⎢⎢⎢⎢⎣

J11

J21

J12

J22

⎤⎥⎥⎥⎥⎦ , was provided for each

voxel in the 3-D PS-OCT scans [17].
Human skin was scanned in vivo using the PS-OCT system with approval from the Human

Research Ethics Committee at The University of Western Australia. Prior to scanning, written
consent was obtained from each subject. In total, 18 different skin locations on the forearm of 3
healthy subjects were scanned to acquire 3-D PS-OCT scans using the protocol as reported in
Ref. [20]. To reduce bulk tissue motion, the PS-OCT probe was gently placed on the skin for
contact scanning. The scanning first incorporated a fiducial marker (i.e., a thin metal square with
a 5-mm-diameter hole to image through) to assess the residual motion, which was consistently
shown to be minor [2]. Therefore, the subsequent scanning did not use the fiducial mark. The
scanning field of view (FOV) varied from 3× 3 mm to 9.9× 9.9 mm, depending on the local
surface geometry. Each 3-D scan comprised either 800 B-scan pairs with 800 A-scans per B-scan
or 1000 B-scan pairs with 1000 A-scans per B-scan. The B-scan pair referred to the two repeated
B-scans acquired at the same lateral location but at different time points, to enable imaging of the
blood vessels by PS-OCTA. In total, 16,600 B-scan pairs were collected within the 18 3-D scans.

2.2. Generation of vessel labels

The vessel label images were generated by applying a custom speckle decorrelation algorithm
to the PS-OCT scans [20]. First, the combined linear OCT amplitude signal was calculated
from the Jones matrix as the square root of the determinant (i.e.,

√︁
|J11 · J22 − J12 · J21 |). The

decorrelation of the combined signal between each B-scan pair was then calculated using a
moving window (size: 5× 5 pixels) based on the formula reported in Ref. [25]. The values in the
resulting decorrelation volume ranged from 0 to 2, where high values indicated high changes
of the OCT signal over time and thus were corresponding to vessels. However, noise in the
combined OCT signal also led to artificially high decorrelation [26]. To reduce such artifacts, we
further weighted the decorrelation signal by the corresponding logarithm of the combined OCT
signal after setting the low OCT signal below an empirically chosen threshold (12 dB) to zero.
The tissue surface in each B-scan of the combined OCT signal was detected, and subsequently
used to flatten B-scan pairs of the combined OCT signal and the corresponding B-scans of the
weighted decorrelation.

The weighted decorrelation still had artifacts due to residual tissue motion, which could
negatively impact the training of deep learning-based PS-OCTA. Such artifacts are usually shown
as lines in the projection image of the vessels [27]. To mitigate these artifacts, we generated
an en face mask of the residual motion by taking the maximum projection of the weighted
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decorrelation within the epidermis (from the skin surface to 50 µm deep), which comprised only
motion artifacts without any vessels. The mask was then subtracted from each en face image in
the flattened, weighted decorrelation volume. The resulting decorrelation B-scans as the vessel
labels and the corresponding OCT B-scan pairs of the four Jones matrix elements (i.e., |J11 |, |J12 |,
|J21 | and |J22 |) and the combined signal (i.e.,

√︁
|J11 · J22 − J12 · J21 |), were subsequently used for

deep learning-based PS-OCTA imaging. The calculation of speckle decorrelation, weighting and
motion reduction were all implemented in MATLAB R2019b (The MathWorks, Inc., Natick,
USA), using an Intel Core i7-9750 H processor with 16-GB memory.

2.3. Deep learning networks and processing protocols

Two neural networks, RDN and GRDN, were explored for PS-OCTA imaging in this study, as
shown in Fig. 1(a). RDN was selected due to its superior OCTA performance reported in the
previous comparative study [23]. Based on RDN, GRDN was proposed by Kim et al., showing
improved image denoising in comparison to RDN [28], but its performance for OCTA has not
been investigated. We first assessed these two networks to determine the superior network for
PS-OCTA imaging. Both networks used the residual dense block (RDB) illustrated in Fig. 1(b) as
their basic module. GRDN further used a grouped RDB (GRDB) structure, which fused feature
maps from 4 cascaded RDBs, as shown in Fig. 1(c). With the same number of RDB modules,
GRDN reduced the distance between the deep and shallow image features through staged cascade
to simplify the training. For the comparison of GRDN and RDN, the two networks comprised
the same number of RDBs (n= 16) in this study. In addition, a convolutional block attention
module (CBAM) was incorporated into GRDN after the up-sampling layer to enhance important
image features from the up-sampled data.
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Fig. 1. Neural networks and basic modules used for deep learning-based PS-OCTA. (a)
Architectures of GRDN (top row) and RDN (bottom row). (b) and (c) Structures of RDB
and GRDB modules, respectively. CBAM: convolutional block attention module; Concat:
concatenate layer; Conv: convolutional layer; ConvDown: convolutional down-sampling
layer; ConvUp: convolutional up-sampling layer; ReLU: rectified linear unit layer.

2500 and 500 decorrelation B-scans and the corresponding OCT B-scan (i.e., image showing
the logarithm of the OCT amplitude) pairs from three 3-D PS-OCT scans were used for the
training and validation of the two networks, respectively. Prior to training, the decorrelation and
OCT B-scans were cropped from skin surface to a physical depth of 650 µm, where most of the
useful signal was located. The cropped B-scans were then resized into 448× 448 pixels with
three RGB channels for each pixel in order to fit for the square kernel (size: 3× 3) used in the
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networks. During training, the SmoothL1 loss function was used to calculate the loss [29]:

SmoothL1 (θ) =
⎧⎪⎪⎨⎪⎪⎩

0.5θ2 if |θ |<1

|θ | - 0.5 otherwise
, (1)

where θ = x − y, which is the difference between the output image y and the label image x.
The training and testing using the remaining OCT B-scan pairs (n= 13,600) were implemented
using Pytorch on a GPU (GTX 3090, Nvidia, Santa Clara, USA). Considering the memory of the
GPU (24 GB), we fed 4 sets of input images into each batch. The training epoch was set to 80 at
a learning rate of 0.0001, as the loss had stabilized before the 80th epoch.

The PS-OCT scans provided OCT B-scan pairs of the four individual Jones matrix elements
and the combined signal from the four elements. We assessed three processing protocols as
shown in Fig. 2 to optimize the performance of deep learning-based PS-OCTA. The first protocol
(P1) used OCT B-scan pairs (at time t1 and t2) of the combined signal as the inputs and output one
PS-OCTA B-scan corresponding to each input OCT B-scan pair. The advantage of the combined
signal is that it is free from polarization-induced artifacts seen in conventional OCT, and thus
can improve the PS-OCTA image quality as compared to conventional OCTA [20]. The second
protocol (P2) used OCT B-scan pairs of each of the four Jones matrix elements as separate inputs
and output four corresponding vessel images, which were subsequently averaged to generate one
final PS-OCTA B-scan. Although the individual Jones matrix elements were still affected by
polarization fading, this protocol allowed the averaging of four vessel images to improve the
quality. In the third protocol (P3), OCT B-scan pairs of all four Jones matrix elements were
jointly used as the inputs, which led to one output PS-OCTA B-scan. The complete detection
of polarized signals jointly provided by the four elements could potentially improve the vessel
image quality.

J11 J12

J21 J22

B-scanJ11

Jones matrix

Output J11

J21 Output 

J22 Output 

Output J12

B-scansJ11, J12, J21&J22

Output 

Output 

2-input model

2-input model

2-input model

2-input model

8-input model

2-input model

Average

Combined OCT B-scanP1

P2

P3

B-scanJ12

B-scanJ21

B-scanJ22

at t1 & t2

at t1 & t2

at t1 & t2

at t1 & t2

at t1 & t2

at t1 & t2

at t1 & t2

Fig. 2. Processing protocols for deep learning-based PS-OCTA. The three protocols (P1,
P2 and P3) are marked in yellow, red and blue, respectively.

2.4. Evaluation of PS-OCTA image quality

To qualitatively assess the image quality, B-scans and en face projection images of vessels
generated by speckle decorrelation and multiple deep learning-based PS-OCTA methods were
compared. As the PS-OCTA data generated by different methods had distinct value ranges
(i.e., 0-2 for speckle decorrelation and 0-255 for deep learning-based methods), the color map
was customized for each image to optimize the image quality. In particular, a lower and upper
display threshold were selected for each image to optimize the vessel contrast, which equivalently
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normalized the PS-OCTA data in the image. Therefore, the color bars of the PS-OCTA images
in the Results all had a normalized value range from 0 to 1.

The quality of B-scans and en face projection images of vessels generated by deep learning-
based PS-OCTA was also quantified by calculating the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) and vessel area density (VAD). PSNR assesses the degree of image
distortion and noise with large values indicating high quality, calculated as:

PSNR = 10 · lg
(︃

MAX2
x

MSE(x, y)

)︃
, (2)

where MAXx is the maximum intensity in the vessel label image x, and MSE is the mean
square error of the output image y to the label image x, with x and y referring to the PS-OCTA
images generated by speckle decorrelation and deep learning-based methods, respectively. SSIM
proposed by Wang et al. [30] was calculated to assess the similarity of two vessel images based on
human visual perception by combining three terms, including luminance, contrast and structure,
defined as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ

2
x + σ

2
y + C2)

. (3)

In this formula, µ and σ are the mean and the standard deviation of the label image x and output
image y, respectively and σxy is the cross-variance for x and y. C1 and C2 are the regulation
constants to avoid instability of regions with local mean or standard deviation close to zero. To
test whether PSNR and SSIM were statistically different between different methods, Student’s
t-test was performed.

In addition, VAD in the en face projection images was quantified by applying a threshold to
the image and then calculating the ratio of the vessel area to the total tissue area. We optimized
the threshold for each projection image to make sure that the vessels were well maintained after
thresholding.

3. Results

3.1. Assessment of RDN and GRDN

Figures 3 and 4 show PS-OCTA imaging with RDN and GRDN on two forearm skin regions
using Protocol 1, as compared to the vessel labels. B-scans from the same lateral location within
the first forearm skin region are shown in Figs. 3(a)-(c) for the vessel label, RDN-based and
GRDN-based PS-OCTA, respectively. RDN and GRDN generate very similar vessel images
(Fig. 3(b) vs 3(c) in the tissue region (between the two dashed lines), which are also highly
consistent with the label image (Fig. 3(a)). However, in the metal maker area where there is only
strong surface reflection in the OCT images (not shown), artifacts are generated by RDN-based
PS-OCTA in Fig. 3(b). Such artifacts are observed in most B-scans with the metal marker from
RDN, and lead to noise in the projection image (from skin surface to 650 µm deep) in Fig. 3(e).
In contrast, GRDN-based PS-OCTA is less impacted by the strong surface reflection, as shown
in the B-scan (Fig. 3(c)) and projection image (Fig. 3(f)). In the tissue region, RDN and GRDN
also generate similar vessel structures to those from the vessel label in Figs. 3(d)–3(f). In the
projection images, the calculated PSNR and SSIM are 19.88 dB and 0.624 for Fig. 3(e), and
20.69 dB and 0.667 for Fig. 3(f), respectively, suggesting good performance of both networks
while GRDN moderately outperforms RDN.

Similar to Fig. 3, PS-OCTA imaging of the second forearm skin region is shown in Fig. 4.
Figures 4(a)–4(c) are B-scans from the vessel label, RDN-based and GRDN-based PS-OCTA
at the same location with residual tissue motion (to the left of the dashed line as marked by
the direction of the green arrows). The motion is not prominent in the vessel label image in
Fig. 4(a) due to the use of the motion reduction method described in Section 2.2. Although the
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Fig. 3. PS-OCTA imaging of a forearm skin region with RND and GRDN. (a)-(c) B-scans
from the same location generated using speckle decorrelation (i.e., vessel label), RDN and
GRDN, respectively. Dots and dashed lines mark the lateral locations of the inner edges
of the metal marker. (d)-(f) Projection images (from skin surface to a depth of 650 µm)
corresponding to (a)-(c), respectively. Dashed lines and dots mark the locations of the
B-scans in (a)-(c), and inner edges of the metal marker, respectively. Scale bars: 500 µm.

Fig. 4. PS-OCTA imaging of a forearm skin region with RND and GRDN. (a)-(c) B-
scans from the same location generated using speckle decorrelation (i.e., vessel label),
RDN and GRDN, respectively. Blue squares and dashed lines mark the regions with and
without prominent tissue motion as indicated by the directions of the green and white
arrows, respectively. (d)-(f) Projection images (from skin surface to a depth of 650 µm)
corresponding to (a)-(c), respectively. Squares and the arrows mark the same positions and
directions as those in (a)-(c), respectively. Scale bars: 500 µm.
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training was performed using label images after motion reduction, RDN-based PS-OCTA still
generated the artifacts due to motion, which are prominent in the B-scan (Fig. 4(b)) and also
visible as a horizontal line in the projection image in Fig. 4(e) (marked by the green arrow). In
comparison, GRDN-based PS-OCTA could mitigate the motion artifacts in the B-scan (Fig. 4(c))
and projection image (Fig. 4(f)), although the vessel contrast seems to be decreased in the right
half of the B-scan in Fig. 4(c) (marked by the direction of the white arrow). In the left half in
Fig. 4(c), more regions of high signal were observed in comparison to Fig. 4(a). As these regions
showed good correspondence with the vessel segments in Fig. 4(f), GRDN-based PS-OCTA
presented an improved capability to maintain true vessel signal while mitigating motion, as
compared to speckle decorrelation. Other than the locations with tissue motion, both RDN and
GRDN demonstrate very comparable performance to speckle decorrelation, observed in most
B-scans and the projection images (Figs. 4(d)–4(f)).

To quantitatively assess the performance of RDN and GRDN, we further calculated PSNR and
SSIM using 3-D scans from nine skin locations comprising 8400 B-scan pairs. These selected
scans did not contain the fiducial marker in order to avoid the impact of the noise in RDN-based
PS-OCTA, induced by the strong reflection from the metal surface as shown in Fig. 3(b). The
results are summarized by the box plots in Figs. 5(a) and 5(b) for PSNR and SSIM, respectively,
where the mean values are also marked by the dots. The mean PSNR of RDN and GRDN is
28.39 dB and 28.67 dB, and the mean SSIM of RDN and GRDN is 0.727 and 0.729, respectively.
Statistical testing indicated that the PSNR and SSIM of RDN are significantly lower than those
of GRDN (p< 0.05 and p< 0.0001, respectively). GRDN also shows higher median values and
shorter box plot whiskers of PSNR and SSIM than RDN, suggesting that the PS-OCTA images
generated using GRDN present a higher similarity to the label images. In addition, the training
time of each epoch for GRDN is only 1/4 of that for RDN, and GRDN also shows an improved
capability to mitigate artifacts due to motion and strong surface reflection as shown in Figs. 3
and 4. Therefore, we selected GRDN for PS-OCTA imaging in the following sections.

Fig. 5. Summary of PSNR (a) and SSIM (b) for PS-OCTA B-scans generated using RDN
and GRDN. The horizontal lines in the boxes mark the medians. The box edges represent
interquartile ranges. Black dots mark the corresponding mean values.

3.2. Assessment of processing protocols

Figure 6 shows PS-OCTA imaging with GRDN of another forearm skin region using the three
deep learning processing protocols. The projection images of vessels in the predicted PS-OCTA
B-scans using the three protocols are shown in Figs. 6(d), 6(g) and 6(j), respectively, and
compared to the projection from the vessel labels in Fig. 6(a). All three processing protocols
show overall similar vessel networks to that from the vessel labels. However, differences between
the three protocols are also observed in local areas, such as in the two areas outlined by the blue
and green squares. In particular, some deep vessels (≥ 550 µm below skin surface) are less visible
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in Protocol 2 than the other two protocols, with one example indicated by the blue arrowhead
in Fig. 6(h). In addition, the region marked by the green arrowhead in Fig. 6(i) from Protocol
2 also shows poorer vessel connectivity than those from Protocol 1 and 3. The moderately
inferior performance of Protocol 2 can be attributed to the fact that each separate input contains
polarization-induced artifacts, which may degrade PS-OCTA image quality and cannot be simply
eliminated by averaging the four vessel images from the Jones matrix elements. Overall, Protocol
1 and 3 present a more similar performance to the speckle decorrelation method in Fig. 6.

Fig. 6. PS-OCTA imaging of a forearm skin region with GRDN using three processing
protocols. (a), (d), (g) and (j) Projection images (from skin surface to a depth of 650 µm)
generated using speckle decorrelation (i.e., vessel label), and GRDN with Protocol 1-3,
respectively. (b), (e), (h), and (k) Magnified images of the area outlined by the blue squares
in (a), (d), (g) and (j), respectively. (c), (f), (i), and (l) Magnified images of the area outlined
by the green squares in (a), (d), (g) and (j), respectively. Blue and green arrowheads mark
corresponding vessels. White scale bars: 500 µm. Cyan scale bars: 150 µm.

To quantify the performance of the three processing protocols, the same collection of B-scans
from nine skin locations as described in Section 3.1 was used to calculate PSNR and SSIM.
The VAD in the resulting projection images was also calculated. Figure 7(a) shows that PSNRs
of Protocols 1 and 2 are higher than that of Protocol 3. However, the SSIM of Protocol 2 is
much lower than those of the other two protocols in Fig. 7(b). These two parameters show
significant differences among the three protocols (p< 0.0001 between each of the two protocols)
based on the statistical test. VADs of vessel labels (green dots in Fig. 7(c)) are generally higher
than those from the three protocols. Among the three processing protocols, Protocol 1 led to
the highest VADs (red dots in Fig. 7(c)) while Protocol 2 led to the lowest VADs (blue dots in
Fig. 7(c)). Additionally, the processing time of the three protocols to generate one PS-OCTA
volume comprising 1000 B-scans is shown in Table 1, as compared to the speckle decorrelation
method. The processing time of Protocol 1 is approximately 1/5 of that of Protocol 2, and less
than half of that of Protocol 3, due to the different numbers of input images for processing.
Protocol 1 is also ∼2.3 times faster than the speckle decorrelation method. Overall, considering
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both the quality of PS-OCTA images and the processing time, Protocol 1 outperforms the other
two processing protocols.

Fig. 7. Assessment of the three processing protocols (P1-P3). (a) and (b) Box plots of
PSNR and SSIM of the B-scans generated using P1-P3, respectively. Black dots mark the
corresponding mean values. (c) VAD of projection images generated using vessel labels and
P1-P3 from nine 3-D scans (S1-S9).

Table 1. Processing time of different PS-OCTA methods to generate 1000 OCTA B-scans

Methods Speckle decorrelation
GRDN

P1 P2 P3

Processing time (s) 204.8 87.4 420.3 214.8

3.3. Assessment of GRDN with Protocol 1

Based on the advantages of GRDN with Protocol 1 for PS-OCTA imaging identified in Sections
3.1 and 3.2, we performed a detailed analysis of its performance for imaging vessels in different
depth ranges in the skin. One example is presented in Fig. 8, showing the projection images
in Figs. 8(d)–8(f) as compared to those from the vessel labels in Figs. 8(a)–8(c). The high
similarity between the corresponding images, demonstrating deep learning-based PS-OCTA’s
ready capability for resolving the vessels in both the superficial and deep plexuses. In the
superficial tissue, the magnified image in Fig. 8(h) from deep learning-based PS-OCTA reduces
the noise at the cost of slightly reduced vessel connectivity, as compared to vessels labels
in Fig. 8(g). In the deep layers, images from deep learning-based PS-OCT appear smoother
with clearer vessel edges in Figs. 8(j) and 8(l) than those from the vessel labels in Figs. 8(i)
and 8(k). Generally, deep learning-based PS-OCTA demonstrates a very comparable imaging
performance to speckle decorrelation in Fig. 8 and on other scans in this study (not shown), which
is promising to become an alternative to the traditional speckle decorrelation method for imaging
skin microvasculature. Additionally, similar to Table 1, to generate 1000 PS-OCTA B-scans
within a 3-D scan, the average processing time of GRDN with Protocol 1 is approximately 1/3 to
1/2 of that of the speckle decorrelation algorithm. The processing time of speckle decorrelation
would increase significantly when the moving window size (i.e., 5× 5 pixels) is increased to
reduce the noise in decorrelation [31].
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Fig. 8. PS-OCTA imaging of a forearm skin region using GRDN with Protocol 1. (a)-(c)
Projection images of vessel labels from skin surface to a depth of 200 µm, 375 µm and 650 µm,
respectively. (d)-(f) Projection images generated by GRDN with Protocol 1 corresponding
to (a)-(c), respectively. (g)-(l) Magnified images of the area outlined by the blue and green
squares in (a), (d), (b), (e), (c) and (f), respectively. White scale bars in (a)-(f): 500 µm.
Cyan scale bars in (g)-(l): 200 µm.

4. Discussions

This study presented the first adoption of deep learning to PS-OCT for angiography and
demonstrated the feasibility for imaging human cutaneous microvasculature. Although there
are already multiple conventional OCTA methods available, they are still subject to limitations
in terms of vessel contrast, processing speed, artifacts caused by tissue motion and strong
surface reflection, among others [1]. Deep learning-based OCTA, as a new OCTA variant, has
demonstrated improved processing speed and vessel contrast in recent studies [21,23,32]. Using
the more informative Jones matrices provided by PS-OCT, deep learning-based PS-OCTA is
promising to further improve the imaging performance.

RDN and GRDN were investigated with different protocols to process the Jones matrix
elements, which demonstrated that optimal performance was obtained with GRDN using the
combined signal from the four elements. The process to generate the vessel contrast with deep
learning can be considered as treating the static tissue in the OCT images as noise for removal,
which explains why neural networks effective for denoising, including RDN and GRDN, can work
for angiography [22,23]. GRDN’s better performance than RDN for PS-OCTA imaging can also
be sustained by its improved denoising capability as previously reported [28]. Overall, GRDN
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provided very similar image quality to speckle decorrelation with faster and fully automatic
processing, which can improve the practicality of PS-OCTA for clinical applications.

The vessel label images were generated using speckle decorrelation, which has been adopted
for human skin imaging in multiple studies [2,25,33]. The advantage of this algorithm is the
demonstrated robustness even when only two repeated B-scans were acquired at the same lateral
locations. This would then help to reduce the motion and the 3-D scan acquisition time, which
is beneficial for in vivo imaging. We note that vessel labels might be improved using other
OCTA algorithms in combination with a larger number of repeated B-scans, such as the SSAPGA
algorithm applied to 48 repeated B-scans [23]. However, an improved imaging setup to further
reduce tissue motion would need to be developed first for skin imaging, such as by revising the
previously reported solutions [34]. Faster scanning systems could also be used as an alternative
method to reduce tissue motion [35–37]. Future work could explore alternative OCTA algorithms
based on more repeated B-scans to improve the vessel labels, which could be subsequently fit into
the deep learning framework proposed in this study to further enhance the imaging performance
of PS-OCTA.

The motion subtraction method, as a straightforward approach, mitigated the artifacts due to
residual motion, shown as the reduced lines in the projection image in Fig. 9(b), as compared to
Fig. 9(a). However, a close examination also indicated the undesired breaks of the vessels in
several local regions, such as those marked by the arrowheads in the magnified image in Fig. 9(d).
As our scans only presented minor motion, such breaks were not prominent and thus not expected
to create major issues to deep learning-based PS-OCTA. However, when there is strong tissue
motion, additional compensation for such breaks will be required for use in conjunction with
motion subtraction. For example, Li et al. proposed a two-stage neural network to improve
vessel connectivity with the second stage predicting and compensating for the missing vessels in
the first stage [38]. Alternatively, more sophisticated methods could be used for more effective
reduction of the tissue motion [27,39–42].

Fig. 9. PS-OCTA imaging of a forearm skin region with speckle decorrelation. (a) and
(b) Projection images of vessels from skin surface to a depth of 650 µm before and after
motion subtraction, respectively. (c) and (d) Magnified images of the area marked by the blue
outlines in (a) and (b), respectively. Blue and green arrowheads mark the motion artifacts in
(c) and the corresponding breaks of vessels in (d). Scale bars: 500 µm.

The full Jones matrices from PS-OCT in this study provided a complete detection of the
backscattered polarized light. When integrated with deep learning, multiple protocols could
be used to process the Jones matrices. The results in this study demonstrated that the joint use
of the information (Protocols 1 and 3) provided better vessel contrast than the use of the four
elements separately (Protocol 2). This is consistent with the previous study using the speckle
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decorrelation algorithm [20]. Although this finding was shown only for the GRDN network in
Section 3.2, it was also observed for the RDN network (results not shown). Furthermore, the
lack of corresponding data by a conventional OCT system from the same skin regions impeded a
comparison between deep learning-based OCTA and PS-OCTA in this study. Future work could
seek to perform such a comparison which may further demonstrate the benefits of PS-OCTA
[16,20]. In addition, the three processing protocols for RDN or GRDN used the OCT signal
variances in time scale (i.e., repeated B-scans), and thus still required care to minimize tissue
motion. Apart from the variance in time, blood flow has also been reported to have a signature
in the polarization scale [43,44]. Following work could explore the use of the polarization
information captured by the Jones matrix elements with custom neural networks to image vessels
using B-scans at a single time point, which would then help to ease the requirement for motion
reduction.

5. Conclusion

In conclusion, this study presented the feasibility of deep learning-based PS-OCTA for imaging
human cutaneous microvasculature. We assessed two neural networks including RDN and
GRDN, and different protocols to process the PS-OCT scans. The results from normal human
skin indicated similar performance of the deep learning-based PS-OCTA to that of speckle
decorrelation. Deep learning-based PS-OCTA also showed ∼2-3 times faster processing and
reduced motion artifacts as compared to speckle decorrelation, and a capability of fully automatic
processing, which promises to translate PS-OCTA to preclinical and clinical applications,
providing improved vessel contrast and imaging depth over conventional OCTA.
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